16,482 research outputs found

    Detachable caster adapter

    Get PDF
    Detachable caster adapter moves heavy welding tables when fork lift trucks are not practical. A support saddle on the adapter, connected to the caster platform by means of a hinge, fits the leg of the welding table, but can be modified to fit other leg configurations

    Using the Fundamental Plane to Estimate the Total Binding Mass in A2626

    Get PDF
    We use fundamental plane (FP) distance estimates to the components of the double cluster A2626 (cz~17,500 km/s) to constrain cluster kinematics and estimate total binding mass. The FP coefficients for a sample of 24 early type and S0 cluster members (alpha=1.30+/-0.36 and beta=0.31+/-0.06) are consistent with others reported in the literature. We examine the Mg_b distributions within both subclusters and find them to be indistinguishable. Lacking evidence for stellar population differences, we interpret the FP zeropoint offset (\log(D_B/D_A)=-0.037+/-0.046, where D_{cl} is distance to subcluster cl) as a measure of the distance difference. This measurement is consistent with the subclusters being at the same distance, and it rules out the Hubble flow hypothesis (distances proportional to velocity) with 99% confidence; analysis of the subcluster galaxy magnitude distributions rules out Hubble flow at 93% confidence. Both results favor a kinematic model where the subclusters are bound and infalling. We estimate the total cluster binding mass by modelling the subcluster merger as radial infall. The minimum possible total binding mass is 1.65 times higher than the sum of the standard virial masses, a difference statistically significant at the ~3sigma level. We discuss explanations for the inconsistency including (1) biases in the standard virial mass estimator, (2) biases in our radial infall mass estimate, and (3) mass beyond the virialized cluster region; if the standard virial mass is significantly in error, the cluster has an unusually high mass to light ratio (~1000h). Because observational signatures of departures from radial infall are absent, we explore the implications of mass beyond the virialized, core regions. (abridged)Comment: 14 pages and 5 figures, Latex, Accepted for publication in A

    Optical Turbulence Measurements and Models for Mount John University Observatory

    Full text link
    Site measurements were collected at Mount John University Observatory in 2005 and 2007 using a purpose-built scintillation detection and ranging system. Cn2(h)C_n^2(h) profiling indicates a weak layer located at 12 - 14 km above sea level and strong low altitude turbulence extending up to 5 km. During calm weather conditions, an additional layer was detected at 6 - 8 km above sea level. V(h)V(h) profiling suggests that tropopause layer velocities are nominally 12 - 30 m/s, and near-ground velocities range between 2 -- 20 m/s, dependent on weather. Little seasonal variation was detected in either Cn2(h)C_n^2(h) and V(h)V(h) profiles. The average coherence length, r0r_0, was found to be 7±17 \pm 1 cm for the full profile at a wavelength of 589 nm. The average isoplanatic angle, θ0\theta_0, was 1.0±0.11.0 \pm 0.1 arcsec. The mean turbulence altitude, h0ˉ\bar{h_0}, was found to be 2.0±0.72.0\pm0.7 km above sea level. No average in the Greenwood frequency, fGf_G, could be established due to the gaps present in the \vw\s profiles obtained. A modified Hufnagel-Valley model was developed to describe the Cn2(h)C_n^2(h) profiles at Mount John, which estimates r0r_0 at 6 cm and θ0\theta_0 at 0.9 arcsec. A series of V(h)V(h) models were developed, based on the Greenwood wind model with an additional peak located at low altitudes. Using the Cn2(h)C_n^2(h) model and the suggested V(h)V(h) model for moderate ground wind speeds, fGf_G is estimated at 79 Hz.Comment: 14 pages; accepted for publication in PAS

    Calculation of Hydrogenic Bethe Logarithms for Rydberg States

    Get PDF
    We describe the calculation of hydrogenic (one-loop) Bethe logarithms for all states with principal quantum numbers n <= 200. While, in principle, the calculation of the Bethe logarithm is a rather easy computational problem involving only the nonrelativistic (Schroedinger) theory of the hydrogen atom, certain calculational difficulties affect highly excited states, and in particular states for which the principal quantum number is much larger than the orbital angular momentum quantum number. Two evaluation methods are contrasted. One of these is based on the calculation of the principal value of a specific integral over a virtual photon energy. The other method relies directly on the spectral representation of the Schroedinger-Coulomb propagator. Selected numerical results are presented. The full set of values is available at quant-ph/0504002.Comment: 10 pages, RevTe
    • …
    corecore